

5127 South Orange Avenue Orlando, FL 32809

Phone: 407-895-0324

Hydraulic Modeling for Potable Water and Irrigation System Report

Range Road Subdivision N. Range Road Cocoa, Florida 32926

Gregory R. Crawford, PE #51335 Florida Engineering Group, Inc. Certificate No. EB0006595

Prepared for: Karali Associates, LLC. June 15, 2022 FEG 19-070

CONTENTS

I.	Ρ	ROJECT DESCRIPTION	3
н.	н	YDRAULIC MODELING FOR POTABLE WATER AND FIRE FLOW ANALYSIS	4
А		Potable Water Demand Design Flows	4
В		Fire Water Demand Design Flows	4
C		POTABLE WATER AND FIRE FLOW MODELING	4
	1.	. Existing Municipal Distribution	4
	2.	. Physical Characteristics	5
	3.	. Potable Water and Fire Flow Hydraulic Analysis Summary	6
III.	н	YDRAULIC MODELING FOR POTABLE WATER AND FIRE FLOW ANALYSIS	7
А		Reuse Water Demand Design Flows	7
В		RECLAIMED WATER FLOW MODELING	7
	1.	. Existing Municipal Distribution	7
	2.	. Reclaimed Water Hydraulic Analysis Summary	7
А	PPE	ENDIX A – LOCATION MAP	9
А	PPE	endix B – ISO Worksheet	
А	PPE	endix C – Potable Water and Fire Flow Analysis Results	11
А	PPE	endix D – Reclaimed Water Analysis Results	12
Таві	E II	-1 - Water Demand Calculations	4
Таві	E II	-2 - MINOR LOSS COEFFICIENTS BEND, VALVES AND TEES	5
Таві	E II	-3 - MINOR LOSS COEFFICIENTS DUE TO CHANGE IN PIPE SIZE	5
ΤΑΒΙ	E II	I-1 - DEMAND SUMMARY	7
Ταβι	e II.	I-2 - Summary of Results	8

I. Project Description

The Range Road Subdivision project site is located south of the intersection Hooper Road and Range Road in the City of Cocoa, Brevard County, Florida. Specifically, the site is located in Sections 19 and 30, Township 24 South, Range 36 East. The proposed project includes Parcel ID numbers 24-36-19-00-501, 24-36-30-00-258, and 24-36-30-00-252. A Site Location Map is provided in **Appendix A** of this report.

The proposed project consists of 71 single-family residential units with its associated roadways, utility facilities, recreational areas, and stormwater system. The utility facilities will consist of potable water, irrigation distribution system, and sanitary sewer.

The proposed potable water distribution system will connect to an existing 12-inch water line on Range Road; this connection supplies an available assumed residual pressure of 50 psi. The proposed system will have two points of connection. The first point of connection will be located to the south at the intersection of Hopper Road and Range Road. The second point of connection will be located to the north, roughly about 740 feet north of the Hopper Road and Range Road intersection. The system will then loop through the development having a blow-off valve at the cul-de-sac for Street A on southeast end of the subdivision and a blow-off valve at the cul-de-sac for Street B on the north end of the subdivision. The fire flow system will be served off the potable water main with a 6-inch pipe into the fire hydrant assembly. Five (5) fire hydrants are proposed around the development.

The proposed irrigation distribution system will consist of two points of connection; each connection supplies an assumed residual pressure of 50 psi. The first point of connection will be located to the south at the intersection of Hopper Road and Range Road. The second point of connection will be located at northeast entrance of the proposed property, roughly about 790 feet north of the Hopper Road and Range Road intersection. The system will then loop through the development having a blow-off valve at the cul-de-sac for Street A on southeast end of the subdivision and a blow-off valve at the cul-de-sac for Street B on the north end of the subdivision.

II. Hydraulic Modeling for Potable Water and Fire Flow Analysis

A. Potable Water Demand Design Flows

Based on City of Cocoa Utilities Handbook, Section 3.3.3 Impact Fees, the calculated water flow demand is:

	ERC/Unit	Number of Units	GPD/Unit	Average Daily Flow	Maxii Daily (2xA	mum Flow ADF)	Peak Daily Flow (4xADF)	
				(GPD)	GPD	GPM	GPD	GPM
Single- Family Residence	1.00 ERC	71	265	18,815	37,630	26.13	75,260	52.26

Table II-1 - Water Demand Calculations

B. Fire Water Demand Design Flows

Using ISO Standards, the Needed Fire Flow for a single-family dwelling unit is 1,250 GPM. This Needed Fire Flow will be assigned to each of the proposed fire hydrants in order to confirm that the minimum required pressure (20 PSI) is maintained in the system and to check pipe velocities. Fire hydrants will be spaced throughout the subdivision with a maximum separation of 500 feet. The ISO worksheet is provided in **Appendix B**.

C. Potable Water and Fire Flow Modeling

The following analysis represents the water modeling for The Range Road Subdivision. The WaterCad software was used to analyze the proposed water system to ensure that the required flows and pressures are available to provide fire protection and the peak demand for proposed development.

As required by the City of Cocoa Utilities Handbook, the project will be modeled using factors of Maximum = 2.0 and Peak = 4.0 (see Table II-I above for demand calculations). Based on the flows listed in Table II-I above, the follow scenarios will be modeled for the proposed development.

- Total Project Peak Daily Flow Demand, excluding Fire Flow
- Total Project Maximum Daily Flow Demand with Fire Flow

1. Existing Municipal Distribution

The residual pressure of the existing municipal water distribution system was assumed to have a residual pressure of 50 psi. The existing system was model and the point of connection are represented as reservoirs R-1 and R-2. The ground elevation at the P.O.C. was used, along with 3.5 feet of cover and the assumed pressure, to calculate the hydraulic grade line at each reservoir.

2. Physical Characteristics

Hazen-Williams Coefficient: A Hazen Williams Coefficient of 120 was used for all PVC pipes.

Head Loss: Head losses were calculated using the Hazen Williams formula from the WaterCad software.

$$H_f = \frac{10.45 * L * Q^{1.85}}{(C^{1.85} * D^{4.8655})}$$

Where, H_f = Head Loss through a pipe L = Length of Pipe Q = Flow C = 120 for PVC D = Diameter of pipe

<u>Minor Loss</u>: Minor losses due to valves, backflow preventers, etc. are calculated using the method of loss coefficient:

$$H_f = K * \frac{V^2}{2g}$$

Minor losses due to bends & tees were determined through the use of a resistance coefficient, which was applied to the velocity head of the flow to find the friction loss in the bend or tee. This allows the analysis model to adjust the head loss in a bend or tee as the flow rate changes. Minor loss coefficients for bends, tees, and pipe size were taken from Ingersoll Rand's Cameron Hydraulic Data 17th Edition. The minor loss coefficients are summarized below.

Table II-2 - Minor Loss Coefficients Bend, Valves and Te	es
--	----

	6" Nominal Diameter	8" – 10" Nominal Diameter
90° Elbow	0.45	0.42
90° Long Radius Elbow	0.24	0.22
Gate valve	0.12	0.11
Tee, Through Flow	0.3	0.28
Tee, Branch Flow	0.9	0.84

Table II-3 - Minor Loss Coefficients Due to Change in Pipe Size

From/To	4"	6"	8″
4"	N/A	0.31	0.56
6"	0.28	N/A	0.19
8″	0.38	0.22	N/A

3. Potable Water and Fire Flow Hydraulic Analysis Summary

Scenario 1: examines the system under peak hour potable demand with no fire flow demand.

Potable Demand: 46.32 GPM Fire Hydrant Demand: 0.00 GPM

<u>Scenario 2</u>: examines the system under maximum daily potable demand along with the required fire flow demand.

Potable Demand: 26.13 GPM Fire Hydrant Demand: 1,250 GPM

See **Appendix C** for results of the hydraulic analysis for the peak hour flow with no fire flow (Scenario 1) and **Appendix D** for the results of the hydraulic analysis for the maximum daily flow with the required fire flow from each fire hydrant separately (Scenario 2). As can be seen, all of the demand sources maintain the required minimum operating pressure of 40 psi under peak daily flow conditions and a minimum pressure of 20 psi under fire flow conditions.

III. Hydraulic Modeling for Potable Water and Fire Flow Analysis

A. Reuse Water Demand Design Flows

Reclaimed water demand was calculated using the standard irrigation design for peak hour flow per zone; the zones where divided into 71 single-family residence units and one recreational area. The maximum daily demand was calculated based on 1.25 inches of irrigation during 7 days. The maximum day irrigation demand rate was estimated as follows:

$$\frac{1.25 \text{ in}}{1 \text{ week}} * \frac{1 \text{ week}}{7 \text{ days}} * \frac{1 \text{ day}}{24 \text{ hours}} * \frac{1 \text{ hour}}{60 \text{ minutes}} * \frac{1 \text{ ft}}{12 \text{ in}} * 24.19 \text{ acres} * \frac{43560 \text{ SF}}{1 \text{ acre}} =$$

$$10.89 \frac{ft^3}{minute} * \frac{7.48 \ gallons}{1 \ ft^3} = 81.45 \ GPM$$

However, for pipe sizing purpose, the peak hour demand flow was used to ensure the required minimum pressure was met throughout the development under the peak demand conditions. Peak hour demand was estimated at a maximum 8 GPM per zone, per lot, knowing only 1 zone per lot operates at one time. The minimum required pressure for an irrigation system is 30 psi. Table III-1 below summarize the demand results

Table III-1 - Demand Summary

Demand Source	Demand Flow Rate		
Zones	72 zones		
Peak Hour Reclaimed Water Demand per zone	8 GPM		
Peak Hour Reclaimed Demand per Development	576 GPM		

The demand for the five (5) junctions is based on 8 GPM per lot.

B. Reclaimed Water Flow Modeling

The following analysis represents the water modeling for The Range Road Subdivision. The WaterCad software was used to analyze the proposed reclaimed water system to ensure that the required flows and pressures are available to provide irrigation services around the proposed development.

1. Existing Municipal Distribution

The residual pressure of the existing municipal water distribution system was assumed to have a dynamic pressure of 40 psi. The existing system was modeled and the point of connection are represented as reservoirs R-1 and R-2. The ground elevation at the P.O.C. was used, along with a 3 feet of cover and the assumed pressure, to calculate the hydraulic grade line at each reservoir.

2. <u>Reclaimed Water Hydraulic Analysis Summary</u>

The WaterCad model analyzed the system under peak hour reclaimed demand of 576 GPM.

Table III-2 - Summary of Results

Domand Source	Demand	Pressure
Demand Source	(GPM)	(psi)
CU-1	85.00	36
CU-2	60.00	36
CU-3	125.00	36
CU-4	90.00	35

Table III-2 above shows the operating pressure for the on-site demand sources. All of the demand sources maintain the required minimum operating pressure of 30 psi under peak hour demand conditions. See **Appendix D** for complete water and fire analysis results.

Appendix A – Location Map

Appendix B – ISO Worksheet

*

	FIRE FLOW WORKSHEI	<u>ET I.S.O. METHOD</u>
Date:	Calculated by: <u>Grego</u>	ry Crawford, Florida Engr. Group, Inc.
Osceola County Project #	- Owne	_{r:} <u>Karali Associates, LLC</u>
Project Address: Range Ro	oad Subdivision	
Construction Type:V	Number of stories: <u>1</u>	Occupancy Type: <u>Single Family Residential</u>
Step 1 Take Ai which is 100% square root:	sq. ft. of 1 st floor plus the following pe	ercentage of the total area of the other floors, and find its
1 st Floor 2,800 BUILDINGS CLASSIFIE BUILDINGS CLASSIFIE 25% OF THE AREA NO IF ONE OR MORE VER EXCEEDING 8 OTHER	Sq. Ft. @ 100% ED AS CONSTRUCTION CLASSES ED AS CONSTRUCTION CLASSES OT EXCEEDING THE TWO LARGES RTICAL OPENINGS IN THE BUILDIN & FLOORS	1-4: 50% OF ALL OTHER FLOORS 5 OR 6: IF ALL VERTICAL OPENINGS ARE PROTECTED, T FLOORS. IG ARE UNPROTECTED 50% OF THE AREA OF NOT
Total (Find square root of "Tota l	Sq. Ft. for fire flow = A	Ai
2,800 first = 2,800	Sq. Ft. =52.9	Ai
STEP 2 $F = Coefficient Related$ $F = 1.5$ for Construction $F = 1.0$ for Construction $F = 0.8$ for Construction $Construction$ $F = 0.6$ for Construction $Construction$ $Sq. Rt.$ 52.9	to the class of construction Class 1 (Wood Frame) Class 2 (Joisted Masonry) Class 3 (Non-Combustible) & Class 4 (Masonry Non-Combust Class 5 (Modified Fire Resistive Class 6 (Fire Resistive) X F 1.0 = 5	SBC Type VI V IV IV IV III I 2.9
STEP 3 MULTIPLY RES	ULT OF STEP 2 BY 18	
	X 18 = GPM	(round off to nearest GPM in table on Step 4 below)
STEP 4 ROUN	ID OFF TO THE NEAREST 250 GPM (R	DUND UP OR DOWN)
500 TO 625 = 500 GPM	626 TO 875 = 750 GPM	876 TO 1125 = 1000 GPM
1126 TO 1375 = 1250 GPI	W 1376 TO 1625 = 1500 GPN	1 1626 TO 1875 = 1750 GPM
1876 TO 2125 = 2000 GPI	V 2126 TO 2375 = 2250 GPN	1 2376 TO 2625 = 2500 GPM
2626 TO 2875 = 2750 GPI	V 2876 TO 3125 = 3000 GPN	1 3126 TO 3375 = 3250 GPM
ROUNDED OFF TO THE	NEAREST 250 GPM =1 , 0 0 0 Page 1 of 07-06	GPM Sub Total 2

STEP 5	C-1 C-2 C-3 C-4 C-5	MULT (NON (LIMIT (COM (FREE (RAPI	TPLY RESUL COMBUSTIE TED COMBUS BUSTIBLE) M BURNING D BURNING 1,000	T OF ROL BLE) CLAY STIBLE) AI MERCANTI MIXED ST) EXPLOSI	INDED O , BLOCK PARTME ILE, RES ORAGE, VES, VAI	STORAGE NTS, OFFIC TAURANTS COMBUST PORS, ETC	() FROM (;, ETC. (CE, CHU ();, ETC. (BLE & F (); () () () () () () () () () () () () ()	ABOVE B RCH, ETC LAMABLE	Y THE OI (OCCUP OCC. F 0.75 0.85 1.00 1.15 1.25	ANT FACTO ACTOR	OR)	
	ROOND		n										
Countv	Proiect #	¥	_						Date: ^J	[anua:	ry 27,	2022	
Round	led off Gl	PM Sub	o Total from	n step 4	-	1,0	00	b = (G	PM)			_	
150.5	Sprinkler	Reducti	ion % Varies	s with Rui	lding Ha	zard		_ ~ (0	,				
Automa	atic Sprin	klers:		_ Subtrac	t	_% Times	s b = N/2	Ą	_ GPM GPM				
Buildin	a exposur	res:	Distance	•	Exposu	re							
1. 2. 3. 4.	Front Left Rear Right	70' 10' 25' 10'	includi	<u>.</u> ng str	reet	<u></u>	_ Add _ Add _ Add _ Add	10 25 20 25	% % %				
							Total	Use hig	ghest p —	per IS	30 Stand	dards	
							Use	25%	% X b =	+	250	_	
									Tota	al	1,250	_GPM	
							Fina	al Fire Flo	w Require	d	1,250	_GPM	
The pe	rcentage f	for any o	one side gen	erally sho	uld not e	exceed the	following	g limits fo	r the sepa	rations s	shown:		
	Separat	tion			Percent	age							
	0 – 10 fe	eet			25%								
	11 – 30	feet			20%								
	31 - 60	feet			15%								
	61 – 100	0 feet			10%								
	101 — 1	50 feet			5%								
<u>Dwellin</u>	i gs – For g (<i>For</i>	roupings other rea	s of 1 – family sidential build	y and small lings, the re	2 – famil egular me	ly dwellings ethod should	not exce d be used	eding 2 sto I.)	ories in heiç	ght, the f	ollowing she	ort method m	ay be used.
	Exposu	ıre dista	nces		Sugges	ted require	d fire flo	w					
	Over 10	00 feet				500 GPM							
	31 to 10	00 feet				750 - 100	00 GPM						
	11 to 30) feet				1000 – 15	500 GPM						
	10 feet o	or less				1500 – 20	000 GPM						

Page 2 of 2 07-06 **Appendix C – Potable Water and Fire Flow Analysis Results**

Label	Elevation (ft)	Demand (gpm)	Hydraulic Grade (ft)	Pressure (psi)
FH-1	20.52	1,255	130.39	48
FH-2	20.74	5	131.04	48
FH-3	20.09	5	132.07	48
FH-4	20.19	5	133.10	49
FH-5	21.10	5	133.18	48
J-2	20.80	0	131.04	48
J-6	19.79	0	133.18	49

WaterCAD.wtg 5/21/2022 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Label	Start Node	Stop Node	Diameter (in)	Material	Hazen-Williams C	Length (ft)	Minor Loss Coefficient (Local)	Flow (gpm)	Velocity (ft/s)	Pressure Loss (psi)
P-1	R-1	FH-1	8.0	PVC	120.0	121	2.790	948	6.05	1.7
P-3	FH-1	J-2	8.0	PVC	120.0	265	0.280	-307	1.96	0.3
P-4	J-2	FH-2	8.0	PVC	120.0	65	0.280	5	0.03	0.0
P-6	J-2	FH-3	8.0	PVC	120.0	393	1.060	-312	1.99	0.4
P-8	FH-3	FH-4	8.0	PVC	120.0	400	0.280	-318	2.03	0.4
P-10	FH-4	J-6	8.0	PVC	120.0	23	0.280	-323	2.06	0.0
P-11	J-6	FH-5	8.0	PVC	120.0	372	0.500	5	0.03	0.0
P-13	J-6	R-2	8.0	PVC	120.0	240	2.570	-328	2.09	0.4

WaterCAD.wtg 5/21/2022 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Label	Elevation (ft)	Demand (gpm)	Hydraulic Grade (ft)	Pressure (psi)
FH-1	20.52	5	131.52	48
FH-2	20.74	1,255	125.43	45
FH-3	20.09	5	129.98	48
FH-4	20.19	5	132.13	48
FH-5	21.10	5	132.30	48
J-2	20.80	0	127.80	46
J-6	19.79	0	132.30	49

WaterCAD.wtg 5/21/2022 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Label	Start Node	Stop Node	Diameter (in)	Material	Hazen-Williams C	Length (ft)	Minor Loss Coefficient (Local)	Flow (gpm)	Velocity (ft/s)	Pressure Loss (psi)
P-1	R-1	FH-1	8.0	PVC	120.0	121	2.790	793	5.06	1.2
P-3	FH-1	J-2	8.0	PVC	120.0	265	0.280	788	5.03	1.6
P-4	J-2	FH-2	8.0	PVC	120.0	65	0.280	1,255	8.01	1.0
P-6	J-2	FH-3	8.0	PVC	120.0	393	1.060	-467	2.98	0.9
P-8	FH-3	FH-4	8.0	PVC	120.0	400	0.280	-473	3.02	0.9
P-10	FH-4	J-6	8.0	PVC	120.0	23	0.280	-478	3.05	0.1
P-11	J-6	FH-5	8.0	PVC	120.0	372	0.500	5	0.03	0.0
P-13	J-6	R-2	8.0	PVC	120.0	240	2.570	-483	3.08	0.7

WaterCAD.wtg 5/21/2022 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Label	Elevation (ft)	Demand (gpm)	Hydraulic Grade (ft)	Pressure (psi)
FH-1	20.52	5	132.59	48
FH-2	20.74	5	130.27	47
FH-3	20.09	1,255	126.74	46
FH-4	20.19	5	130.63	48
FH-5	21.10	5	130.93	48
J-2	20.80	0	130.27	47
J-6	19.79	0	130.93	48

WaterCAD.wtg 5/21/2022 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Label	Start Node	Stop Node	Diameter (in)	Material	Hazen-Williams C	Length (ft)	Minor Loss Coefficient (Local)	Flow (gpm)	Velocity (ft/s)	Pressure Loss (psi)
P-1	R-1	FH-1	8.0	PVC	120.0	121	2.790	616	3.93	0.7
P-3	FH-1	J-2	8.0	PVC	120.0	265	0.280	610	3.90	1.0
P-4	J-2	FH-2	8.0	PVC	120.0	65	0.280	5	0.03	0.0
P-6	J-2	FH-3	8.0	PVC	120.0	393	1.060	605	3.86	1.5
P-8	FH-3	FH-4	8.0	PVC	120.0	400	0.280	-650	4.15	1.7
P-10	FH-4	J-6	8.0	PVC	120.0	23	0.280	-655	4.18	0.1
P-11	J-6	FH-5	8.0	PVC	120.0	372	0.500	5	0.03	0.0
P-13	J-6	R-2	8.0	PVC	120.0	240	2.570	-661	4.22	1.3

WaterCAD.wtg 5/21/2022 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Label	Elevation (ft)	Demand (gpm)	Hydraulic Grade (ft)	Pressure (psi)
FH-1	20.52	5	133.42	49
FH-2	20.74	5	132.21	48
FH-3	20.09	5	130.40	48
FH-4	20.19	1,255	128.68	47
FH-5	21.10	5	129.14	47
J-2	20.80	0	132.21	48
J-6	19.79	0	129.14	47

WaterCAD.wtg 5/21/2022 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Label	Start Node	Stop Node	Diameter (in)	Material	Hazen-Williams C	Length (ft)	Minor Loss Coefficient (Local)	Flow (gpm)	Velocity (ft/s)	Pressure Loss (psi)
P-1	R-1	FH-1	8.0	PVC	120.0	121	2.790	434	2.77	0.4
P-3	FH-1	J-2	8.0	PVC	120.0	265	0.280	429	2.74	0.5
P-4	J-2	FH-2	8.0	PVC	120.0	65	0.280	5	0.03	0.0
P-6	J-2	FH-3	8.0	PVC	120.0	393	1.060	424	2.71	0.8
P-8	FH-3	FH-4	8.0	PVC	120.0	400	0.280	419	2.67	0.7
P-10	FH-4	J-6	8.0	PVC	120.0	23	0.280	-837	5.34	0.2
P-11	J-6	FH-5	8.0	PVC	120.0	372	0.500	5	0.03	0.0
P-13	J-6	R-2	8.0	PVC	120.0	240	2.570	-842	5.37	2.1

WaterCAD.wtg 5/21/2022 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Label	Elevation (ft)	Demand (gpm)	Hydraulic Grade (ft)	Pressure (psi)
FH-1	20.52	5	133.48	49
FH-2	20.74	5	132.36	48
FH-3	20.09	5	130.67	48
FH-4	20.19	5	129.08	47
FH-5	21.10	1,255	116.45	41
J-2	20.80	0	132.36	48
J-6	19.79	0	128.96	47

WaterCAD.wtg 5/21/2022 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Label	Start Node	Stop Node	Diameter (in)	Material	Hazen-Williams C	Length (ft)	Minor Loss Coefficient (Local)	Flow (gpm)	Velocity (ft/s)	Pressure Loss (psi)
P-1	R-1	FH-1	8.0	PVC	120.0	121	2.790	418	2.67	0.4
P-3	FH-1	J-2	8.0	PVC	120.0	265	0.280	413	2.63	0.5
P-4	J-2	FH-2	8.0	PVC	120.0	65	0.280	5	0.03	0.0
P-6	J-2	FH-3	8.0	PVC	120.0	393	1.060	407	2.60	0.7
P-8	FH-3	FH-4	8.0	PVC	120.0	400	0.280	402	2.57	0.7
P-10	FH-4	J-6	8.0	PVC	120.0	23	0.280	397	2.53	0.0
P-11	J-6	FH-5	8.0	PVC	120.0	372	0.500	1,255	8.01	5.4
P-13	J-6	R-2	8.0	PVC	120.0	240	2.570	-858	5.48	2.2

WaterCAD.wtg 5/21/2022 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Hydraulic Model Inventory: WaterCAD.wtg

Title			
Engineer			
Company			
Date	1/26/2022		
Notes			
Scenario Summary			
ID	67		
Label	Scenario - 2 -	MDF + Fire Flow	
Notes			
Active Topology	<i> Base Act</i>	ive Topology	
Physical	Fire		
Demand	Fire		
Initial Settings	<i> Base Init</i>	ial Settings	
Operational	<i> Base Op</i>	erational	
Age	<i> Base Age</i>	2	
Constituent	<i> Base Co</i>	- nstituent	
Trace	<i>> Base Tra</i>		
Fire Flow	<1> Base Fire	Flow	
Energy Cost	<1> Dase File	erav Cost	
Transient		incient	
nansieni		nisicill Sours Dependent Demand	
Friessure Dependent Demand	<1> base Pre		
Failure History	<1> base rai		
SCADA	<1> Base SU		
User Data Extensions	<1> Base Use	er Data Extensions	
Steady State/EPS Solver Calculation Options	<i> Base Cal</i>	culation Options	
Transient Solver Calculation Options	<i> Base Cal</i>	culation Options	
Network Inventory			
Dines	0	Dump Stations	0
Pipes	ð	Pump Stations	U
Laterais	U	Variable Speed Pump Batteries	0
lunctions	7	PRV's	Ω
Hydrants	, 0	PSV/s	0
Tanks	0	PBV/s	0
Pacarvoire	2	FDV 5 FCV/c	0
Customer Meters	<u>د</u>		0
	0		0
i dµS	U	Grvs	U
SCADA Elements	U	Isolation valves	U
Pumps	U	Spot Elevations	U
Transient Network Inventory			
Turbines	0	Rupture Disks	0
Periodic Head-Flows	0 0	Discharges to Atmosphere	0 0
	0	Orifices Retween Pines	0
All Valves Hydropheumatic Tanks	0	Valves With Linear Area	U
	U	valves Will Linear Area Change	0
Surge Valves	0		0
Surge valves Chack Valves	0	Surgeraliks	U
CHECK VOIVES	U		
Pressure Pipes Inventory			
8.0 (in)	1,879 ft	All Diameters	1,879 ft
	=,=:= :=	=	_,

WaterCAD.wtg 5/21/2022 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Label	Elevation (ft)	Demand (gpm)	Hydraulic Grade (ft)	Pressure (psi)
FH-1	20.52	10	134.24	49
FH-2	20.74	10	134.17	49
FH-3	20.09	10	134.09	49
FH-4	20.19	10	134.03	49
FH-5	21.10	10	134.02	49
J-2	20.80	0	134.18	49
J-6	19.79	0	134.02	49

WaterCAD.wtg 5/21/2022 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Label	Start Node	Stop Node	Diameter (in)	Material	Hazen-Williams C	Length (ft)	Minor Loss Coefficient (Local)	Flow (gpm)	Velocity (ft/s)	Pressure Loss (psi)
P-1	R-1	FH-1	8.0	PVC	120.0	121	2.790	102	0.65	0.0
P-3	FH-1	J-2	8.0	PVC	120.0	265	0.280	92	0.59	0.0
P-4	J-2	FH-2	8.0	PVC	120.0	65	0.280	10	0.07	0.0
P-6	J-2	FH-3	8.0	PVC	120.0	393	1.060	81	0.52	0.0
P-8	FH-3	FH-4	8.0	PVC	120.0	400	0.280	71	0.45	0.0
P-10	FH-4	J-6	8.0	PVC	120.0	23	0.280	60	0.39	0.0
P-11	J-6	FH-5	8.0	PVC	120.0	372	0.500	10	0.07	0.0
P-13	J-6	R-2	8.0	PVC	120.0	240	2.570	50	0.32	0.0

WaterCAD.wtg 5/21/2022 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

FlexTable: Reservoir Table

Label	Elevation (ft)	Zone	Flow (Out net) (gpm)	Hydraulic Grade (ft)
R-1	134.30	<none></none>	418	134.30
R-2	134.00	<none></none>	858	134.00

WaterCAD.wtg 5/21/2022 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Appendix D – Reclaimed Water Analysis Results

Scenario S	Scenario Summary									
ID		1								
Label	Reclaimed Water									
Notes										
Demand		Base Demand								
	i				1					
ID	Label	Demand (Base) (gpm)	Pattern (Demand)	Zone						
31	J-1	120.00	Fixed	<none></none>						
37	J-2	56.00	Fixed	<none></none>						
47	J-5	256.00	Fixed	<none></none>						
33	J-3	8.00	Fixed	<none></none>						
39	J-4	128.00	Fixed	<none></none>						

Junction Demand Control Center

ReuseWaterCAD.wtg 5/21/2022

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Label	Elevation (ft)	Demand (gpm)	Hydraulic Grade (ft)	Pressure (psi)
J-1	21.07	120	90.53	30
J-2	20.96	56	90.03	30
J-3	20.65	8	94.57	32
J-4	21.61	128	89.80	30
J-5	20.83	256	86.69	28

ReuseWaterCAD.wtg 5/21/2022

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Label	Start Node	Stop Node	Diameter (in)	Material	Hazen-Williams C	Length (ft)	Minor Loss Coefficient (Local)	Flow (gpm)	Velocity (ft/s)	Pressure Loss (psi)
P-1	R-1	J-1	4.0	PVC	120.0	367	2.860	271	6.92	9.7
P-2	J-1	J-2	4.0	PVC	120.0	161	0.610	56	1.43	0.2
P-3	J-1	J-5	4.0	PVC	120.0	469	1.290	95	2.43	1.7
P-4	J-5	J-3	4.0	PVC	120.0	358	1.290	-161	4.11	3.4
P-5	J-3	J-4	4.0	PVC	120.0	330	1.420	128	3.27	2.1
P-6	J-3	R-2	4.0	PVC	120.0	222	3.130	-297	7.58	7.5

ReuseWaterCAD.wtg 5/21/2022

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Scenario: Reclaimed Water

ReuseWaterCAD.wtg 5/21/2022

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

FlexTable: Reservoir Table

Label	Elevation (ft)	Zone	Flow (Out net) (gpm)	Hydraulic Grade (ft)
R-1	112.90	<none></none>	271	112.90
R-2	111.90	<none></none>	297	111.90

ReuseWaterCAD.wtg 5/21/2022

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666